14) Calculate M_{u}

Because there is no side thrust, we cannot use the flexure analogy.
The equation 13.6(e) (ii) can be modified for loading other than at the shear centre by using the following equation for the equivalent moment factor.
$\omega_{3}=\omega_{2} B^{r} R \leq 2.5$
Where ω_{2} is the equivalent moment factor for the moment distribution along the laterally unsupported length; B is as defined below; the exponent r is 0 for loading through the shear centre, -1 for loading at the top flange (to account for the destabilizing effect of loading a beam at the level of the compression flange) and +1 for loading at the bottom flange (stabilizing effect); R is a factor to account for double curvature loading of mono-symmetric sections, taken as 1.0 for single curvature between points of lateral supports.

Where $\quad W=\left(\frac{\pi}{L_{s}}\right)^{2} \frac{\mathrm{EC}_{w}}{G J}$ and Ls is the laterally unsupported length.
A simplification is shown in the SSRC Guide (Ziemian 2010) where the effects of load height and load condition can be approximated by taking $\mathrm{B}=1.4$. This approach will be used herein.

Then $\omega_{3}=1.185 \times 1.4^{-1}=0.846$

$$
\begin{aligned}
M_{u} & =\frac{0.846 \times \pi^{2} \times 200000 \times 221.7 \times 10^{6}}{2 \times 10670^{2}}\left[142.3+\sqrt{142.3^{2}+4\left(\frac{77000 \times 10.69 \times 10^{6} \times 10670^{2}}{\pi^{2} \times 200000 \times 221.7 \times 10^{6}}+\frac{19 \times 10^{12}}{221.7 \times 10^{6}}\right)}\right] \\
& =2.027 \times 10^{9} \mathrm{~N} \cdot \mathrm{~mm}=2027 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

15) Calculate $M_{y r}$

$$
\begin{aligned}
M_{y r} & =0.7 S_{x} F_{y}, \text { with } S_{x} \text { minimum } \\
& =\frac{0.7 \times 6409 \times 10^{3} \times 350}{10^{6}}=1570 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

The factor 0.7 was introduced in S16 to account for residual stresses. See comment by Trahair (2011), p. 8.

16) Calculate L_{u}

$$
L_{u}=1.1 r_{t} \sqrt{\frac{E}{F_{y}}}=\frac{490 r_{t}}{\sqrt{F_{y}}}
$$

where

$$
r_{t}=\frac{b_{c}}{\sqrt{12\left(1+\frac{h_{c} w}{3 b_{c} t_{c}}\right)}}
$$

$h_{c}=$ depth of the web in compression
$b_{c}=$ width of compression flange
$t_{c}=$ thickness of compression flange

$$
\begin{aligned}
& r_{t}=\frac{347.4}{\sqrt{12\left(1+\frac{239.1 \times 16.5}{3 \times 347.4 \times 40.07}\right)}}=95.86 \mathrm{~mm} \\
& L_{u}=\frac{490 \times 95.86}{\sqrt{350}}=2511 \mathrm{~mm}
\end{aligned}
$$

17) Since $M_{u}>M_{y r}$, calculate M_{r}

$$
\begin{gathered}
M_{r}=\phi\left[M_{p}-\left(M_{p}-M_{y r}\right)\left(\frac{L-L_{u}}{L_{y r}-L_{u}}\right)\right] \leq \phi M_{p} \\
L_{y r}=\text { length } L \text { obtained by setting } M_{u}=M_{y r}
\end{gathered}
$$

To find $L_{y r}, M_{u}$ can be expressed as follows

$$
M_{u}=\frac{1.851 \times 10^{14}}{L_{y r}^{2}}\left[142.3+\sqrt{20249+4\left(1.881 \times 10^{-3} L_{y r}^{2}+85701\right)}\right]
$$

$L_{y,}, \mathrm{~mm}$	$M_{w} \mathrm{kN} \cdot \mathrm{m}$
12000	$1729<1570$
13000	$1556<1570$, but close enough, can be refined if necessary

18) Calculate M_{r}

From step $11, M_{p}=2797 \mathrm{kN} \cdot \mathrm{m}, \phi M_{p}=0.9 \times 2797=2517 \mathrm{kN} \cdot \mathrm{m}$

$$
\begin{aligned}
M_{r} & =0.9\left[2797-(2797-1570)\left(\frac{10670-2511}{13000-2511}\right)\right] \\
& =0.9 \times 1843 \\
& =1658 \mathrm{kN} \cdot \mathrm{~m}<2517 \mathrm{kN} \cdot \mathrm{~m} \mathrm{OK}
\end{aligned}
$$

19) Calculate the strength in bending for the load combination of side thrust, no impact.

$$
\begin{aligned}
M_{u} & =\frac{1.185 \times \pi^{2} \times 200000 \times 221.7 \times 10^{6}}{2 \times 10670^{2}}\left[142.3+\sqrt{142.3^{2}+4\left(\frac{77000 \times 10.69 \times 10^{6} \times 10670^{2}}{\pi^{2} \times 200000 \times 221.7 \times 10^{6}}+\frac{19 \times 10^{12}}{221.7 \times 10^{6}}\right)}\right] \\
& =2.839 \times 10^{9} \mathrm{~N} \cdot \mathrm{~mm}=2839 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

20) Calculate $\boldsymbol{M}_{\boldsymbol{y}}$

Refer to step 15
$M_{y r}=1570 \mathrm{kNm}$

21) Calculate L_{u}

Refer to step 16
$L_{u}=2511 \mathrm{~mm}$
22) Since $M_{u}>M_{y r}$, calculate M_{r}

$$
M_{r}=\phi\left[M_{p}-\left(M_{p}-M_{y r}\right)\left(\frac{L-L_{u}}{L_{y r}-L_{u}}\right)\right] \leq \phi M_{p}
$$

$L_{y r}=$ length L obtained by setting $M_{u}=M_{y r}$
To find $L_{y r}, M_{u}$ can be expressed as follows

$$
M_{u}=\frac{2.593 \times 10^{14}}{L_{y r}^{2}}\left[142.3+\sqrt{20249+4\left(1.881 \times 10^{-3} L_{y r}^{2}+85701\right)}\right]
$$

$L_{y,} m m$	$M_{w}, k N \cdot m$
14000	$1973>1570$
15000	$1816>1570$
17000	$1557<1570$, but close enough

23) Calculate M_{r}

From step $11, M_{p}=2797 \mathrm{kN} \cdot \mathrm{m}, \phi M_{p}=0.9 \times 2797=2517 \mathrm{kN} \cdot \mathrm{m}$

$$
\begin{aligned}
M_{r} & =0.9\left[2797-(2797-1570)\left(\frac{10670-2511}{17000-2511}\right)\right] \\
& =0.9 \times 2106 \\
& =1895 \mathrm{kN} \cdot \mathrm{~m}<2517 \mathrm{kN} \cdot \mathrm{~m} \text { OK }
\end{aligned}
$$

24) Calculate distribution of the side thrust C s by flexural analogy

See figures A10 and A11.
Moment at Shear Centre

$$
=C_{s}(243+89)=332 C_{s}
$$

Couple, applied to each flange

$$
=\frac{332 C_{s}}{223+384}=0.5470 \mathrm{C}_{s}
$$

Note: This dimension should be to the centroid of the top flange, Close enough in this case.

Figure A10
Distribution of Side Thrust

Distribution of horizontal load applied at shear centre, as a simple beam analogy

$$
\begin{aligned}
& \quad \text { - to top flange } \frac{C_{s} \times 384}{(223+384)}=0.6326 C_{s} \\
& \quad \text { - to bottom flange }=0.3674 C_{s} \\
& M_{f y t}(\text { top flange })=1.18 \times 73.19=86.36 \mathrm{kN} \cdot \mathrm{~m} \\
& M_{f y b}(\text { bottom flange })=0.1796 \times 73.19=13.15 \mathrm{kN} \cdot \mathrm{~m} \\
& M_{f x}=1289 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Figure A11

Moments about Shear Centre

25) Check overall member strength with impact, no side thrust

$$
\begin{aligned}
& \frac{M_{f x}}{M_{r x}}+\frac{M_{f y}}{M_{r y}} \leq 1.0 \\
& \frac{1289}{0.9 \times 2797}+\frac{0.0}{0.9 \times 422}=0.511+0.0=0.511<1.0 \quad \mathrm{OK}
\end{aligned}
$$

26) Check stability (lateral-torsional buckling) with impact, no side thrust

$$
\frac{1289}{0.9 \times 1843}+\frac{0.0}{0.9 \times 422}=0.777+0.0=0.777<1.0 \mathrm{OK}
$$

27) Check overall member strength with side thrust, no impact.

Because side thrust produces calculated M_{y}, we are entitled to use the flexure analogy as in step 24 .

$$
\frac{1040}{0.9 \times 2797}+\frac{86.36}{0.9 \times 422}=0.413+0.227=0.640<1.0 \mathrm{OK}
$$

28) Check stability with side thrust, no impact

$$
\frac{1040}{0.9 \times 2054}+\frac{86.36}{0.9 \times 422}=0.563+0.227=0.790<1.0 \mathrm{OK}
$$

29) By clause 13.5(a), check that flanges do not yield under service load. A quick check shows OK.

No further checks are required (see Section 5.10)
Conclusion: Section is adequate in bending.

Check Local Wheel Support

(a) Check Web Crippling and Yielding (Clause 14.3.2)

$$
\stackrel{N}{4}=(2 \times 146)+(5 \times 38)=482 \mathrm{~mm}
$$

Figure A21

Web Crippling Under Crane Wheel

Check Interior
(i) $B_{r}=0.8 \times 16 \times 482 \times \frac{350}{1000}=2159 \mathrm{kN}$
14.3.2(i) Governs
(ii) $\quad B_{r}=1.45 \times \frac{0.8 \times 16^{2}}{1000} \sqrt{350 \times 200000}=2485 \mathrm{kN}$

The factored resistance of $2159 \mathrm{kN}>517.5 \mathrm{kN}$ OK

A check at the ends is not necessary because bearing stiffeners will be used.
(b) Check torsional effects on web under a wheel load including rail eccentricity and side thrust.

Factored Vertical Load $=1.5 \times 1.25 \times 276=517.5 \mathrm{kN}$, including impact
Factored moment due to eccentricity $=1.5 \times 1.25 \times 276 \times \frac{12}{1000}=6.21 \mathrm{kN} \cdot \mathrm{m}$
Factored moment due to side thrust $=1.5 \times 22.21 \times \frac{184}{1000}=6.13 \mathrm{kN} \cdot \mathrm{m}$

$$
M_{f}=6.21+6.13=12.34 \mathrm{kN} \cdot \mathrm{~m}
$$

